忍者ブログ

長良の落陽。

基礎から学ぶサーボモータの仕組み

いま注目を浴びているサーボモータとは一体どんなモータ?
私たちの日常生活を振り返ると、そのほとんどにモータが利用されていることに気づくでしょう。実は、世界で消費される電力のうち、モータが占める割合だけで約45%もあるというから驚きです。ただし、モータと一口に言っても、プラスチックモデルに付いている玩具のような小型モータから、発電所のポンプなどに使われる巨大なモータまで、様々な種類があります。
世の中には、こういった誰でも知っている汎用モータのほかにも、工場の製造ラインなどに使われるような特殊なモータもあります。その1つが「サーボモータ」と呼ばれる産業用モータです。では、サーボモータは、私たちが目にする汎用モータと比べて、どのように違うのでしょうか?
そもそもサーボモータの「サーボ」という語源は、「召使い」という意味の「Servant」(ラテン語ではServus)に由来すると言われています。ご主人が何か指示を出すと、それに従って召使いが忠実に働いてくれるようなイメージを想像すると分かりやすいかもしれません。
例えば、自動車製造工場で稼働する産業用ロボットは、部品をピッキングしたり、溶接したり、塗装したり、常に同じ動作を正確に繰り返しながら、大量の自動車を作り出しています。ロボットに内蔵されているサーボモータに指示を出すと、決められた位置や速度や回転力(トルク)で忠実に動いてくれます。
そのため、いまやサーボモータは、超高速や超精密な制御を行う産業機械の構成要素として、必要不可欠なものになっています。例えば、前出の産業用ロボットはもちろん、工作機械、電子部品の実装装置、半導体・液晶製造装置、射出成形機、ラベル包装機、プレス機械、医療機器など、様々な利用シーンで大活躍しているのです。
サーボモータとセットになった重要な構成要素とは?
サーボモータは、過酷な環境で何度も起動と停止を繰り返しながら動くため、一般的なモータよりも信頼性が高く、壊れないような構造になっています。かつては直流で動くDCサーボモータが使われていましたが、現在は交流で動くACサーボモータが主流になっています。DCサーボモータには「ブラシ」という機械式なスイッチがありました。しかし、ブラシの定期的な交換や、摩耗による粉塵の発生などがあり、保守性や信頼性に問題があったのです。
そこで、いまはブラシのないACサーボモータが、ほとんどの場合において採用されるようになりました。ACサーボモータの内部は「ロータ」と、その周りに配置された「ステータ」で構成されています。
ステータ(固定子)は、コアとなる鉄心の周りに電線が巻き付けられたものです。電線に電流が流れると、ステータの中は電磁石になります。交流は電流の向きと大きさが交互に変わるため、電磁石もそれに伴ってN極とS極に切り替わります。一方、ロータはモータの軸にあたる部分で、そこにもN極とS極の強力な永久磁石が埋め込まれています。
ACサーボモータのステータに交流が流れると、各コアが時間によってN極やS極になります。そして、ロータの永久磁石(N極やS極)を引き付けたり、あるいは反発させたりしながら、ロータを回転させるのです。なお、最近のACサーボモータは、全体がコンパクトになり、慣性(回転しづらさ)を小さくすることで、ロータが素早く回転できるように工夫が凝らされています。
また、ロータの後側には回転センサである「エンコーダ」が付いています。このエンコーダの内部には、スリットが刻まれた円盤と、光センサがあります。ロータとエンコーダの円盤は連結されているため、動いたスリットの数を光センサでカウントし、電気信号に変換することで、回転時の位置や速度を検出する仕組みです。
サーボモータが動く仕組みは?フィードバック信号とは何か?
前述のように、サーボモータは正確かつ素早く回転する機械ですが、モータ単体だけでは何もできません。モータを動かすためには、司令塔の役割を果たす「プログラマブルコントローラ(PLC)」と、実際にサーボモータを動かす「サーボアンプ」(ドライバ)が基本的には必要です。サーボアンプは、容量ごとに異なるサーボモータの性能を最大限に発揮できるようにチューニングされているため、メーカーによって両者がセットで販売されることが一般的です。
では、具体的にサーボモータは、どのような仕組みで動くのでしょうか?
まず、司令塔であるプログラマブルコントローラから、サーボモータをどう動かすべきか「位置/速度/回転力」についての目標値が出されます。位置なら、ある目標値でピタリと止められます。速度なら、低速から高速まで、一気に目標速度まで加速することが可能です。回転力については、サーボモータにかかる力(負荷)が急に変化しても目標の回転力を維持できます。
このようなプログラマブルコントローラからの目標値を受けるのが「サーボアンプ」です。サーボアンプは、サーボモータが目標値どおりに動くために必要な出力(電力)を供給します。ただし、本当にサーボモータが指令どおりに動いたかどうかは分かりません。そこで、前述のエンコーダが実際のサーボモータの回転位置や速度を検出し、その電気信号をサーボアンプに返します。
この信号のことを「フィードバック信号」(feedback)と呼びます。図の矢印のように、エンコーダがサーボモータからの信号を摂取し(feed)、それをサーボアンプ側に戻すわけです(back)。そして、プログラマブルコントローラから出された目標値とフィードバック信号を比較して、その誤差がゼロに近づくように、サーボモータの出力をうまくコントロールしていくわけです。
分かるように、このような制御は、フィードバック信号がサーボアンプ側に戻され、閉じられたループを構成するため、「クローズド・ループ制御」と呼ばれています。サーボモータの最大のメリットである正確な位置/速度/回転力は、このクローズド・ループ制御によって生み出されるのです。
------------------------------------------------------------
skysmotor.comNema 14 ステッピングモーターステッピングモータドライバなどを販売している専門的なオンラインサプライヤーです。お客様に競争力のある価格、または効率的なサービスを提供しております。
PR

3Dプリンターが有効なケース

3Dプリント(積層法)と切削加工の違い、そして3Dプリンターならではのメリットをご紹介しましたが、ここからは実際に3Dプリンターの造形方法が有効なケースをご紹介します。
以下のような造形をお考えの方は、3Dプリンターを導入すると、作業効率がグッと向上する可能性があります。
中空構造
切削加工で使用する切削機は、中が空洞になっている構造や、造形物の内部にさらに造形物があるといった複雑な形状の加工ができません。
また、先ほども少し触れましたが、刃物が入りにくい形状の物も加工が困難です。
一方、3Dプリンターであれば、こうした複雑な造形も容易に行うことができます。
難なく加工を行うことができるどころか、中空構造であれば、ラフィメントを重ねなければいけない面積が少なく、造形時間の短縮にもなりますし、材料コストの圧縮などにも繋がるため、中空モデルの造形は3Dプリンターがおすすめです。
透明樹脂の高精度造形
3Dプリンターの中には透明樹脂を高精度で造形できるものもあります。
特に、透明樹脂の中にさらに造形物が入っているスケルトンの模型などは、3Dプリンターの得意分野。
また、3Dプリンターによるスケルトンの造形物は医療分野でも注目されており、血管を忠実に再現して手術のトレーニングを行うといった用途でも活躍しています。
-------------------------------------------------------------------------
skysmotor.comバイポーラステッピングモータ中空ステッピングモータなどを販売している専門的なオンラインサプライヤーです。お客様に競争力のある価格、または効率的なサービスを提供しております。

モータの回転原理

電流と磁界と力について
最初にこれからする説明のために、電流と磁界と力に関する基礎となる法則などをおさらいしておきます。懐かしい感じがしますが、普段、磁気関連の部品を使うことが少ないと忘れがちです。
モータの回転原理
モータの回転原理を説明します。図と式を使います。
導線が長方形の場合に、電流に働く力を考えます。
辺a、cの部分に働く力Fは、
 F=B×I×l[N]
となり、中心軸を軸としたトルクを生じます。
たとえば角度θだけ回転した状態を考えると、b、dに直角に働く力はsinθ分になるため、aの部分のトルクTaは、次の式で表されます。
Ta≃h/2×B×I×l×sinθ[N∙m]
cの部分も同様に考えると全体で2倍になり、以下の式で算出されるトルクが発生します。
 T=B×I×h×l×sinθ[N∙m]
長方形の面積はS=h・lなので上記の式に代入すると、以下になります。
 T=B×I×S×sinθ[N∙m]
この式は長方形だけでなく、円形など他の一般的な形でも成り立ちます。この原理を利用したものがモータです。

----------------------------------------------------------------
skysmotor.comモータドライバNema 14 ステッピングモーターなどを販売している専門的なオンラインサプライヤーです。お客様に競争力のある価格、または効率的なサービスを提供しております。

モーターのノイズ対策

1.モータのノイズの概要
電子機器の多様化に対応して、入力電力3W程度以下のブラシ付き小型直流モータ(DCマイクロモータ)は、特に音響機器、OA機器、車載機器などの分野において大幅に需要が増大している。DCマイクロモータは励磁コイルに流れる電流が、モータの回転に伴って高速でON-OFFされるため、誘導性負荷を開閉した時と同様のメカニズムでピーク電圧が高く、立ち上がりのdv/dtが極めて大きいサージが連続して発生し、これが原因で広い周波数帯域に渡ってレベルの大きなノイズが発生する。極めて広い周波数帯域に渡ってレベルの高いノイズが観測され、エミッション(EMI)規制のみならず、近年の高性能な映像機器、音響機器の画像、音質劣化など、機器自体および周辺機器に対しても様々な悪影響を及ぼしている。
① ノイズ対策部品
DCマイクロモータのノイズ対策部品としてはモータ内部に実装するリングバリスタ、外付け用としてコンデンサや巻線型インダクタが使用される。
リングバリスタ
コンデンサ
インダクタ
② ノイズ対策技術
モータのノイズの吸収は発生源で対策可能なリングバリスタが理想的で、最も効果的である。リングバリスタSTRによるモータノイズ吸収効果例として、0.6WのDCマイクロモータに50cmの電源供給用ケーブルを接続し、20g/cmの低負荷にて駆動した時に発生する輻射ノイズを3mの距離において、リングバリスタなしのモータとSTRを装着したモータについて比較した結果として、STRを装着することにより、広い周波数帯域にわたって大きな効果を発揮することがわかっている。
2.リングバリスタ
リングバリスタの吸収効果は、一般に駆動回路やモータとの相性によって大きく変化するため、モータメーカ、リングバリスタメーカを含めて十分に検討することがコストパフォーマンスを引き出すポイントとなる。
コンデンサ、インダクタのみの対策では不十分で、この両者を組み合わせてLCフィルタを構成させることにより、十分な吸収効果を得られることもある。
フィルタはDCマイクロモータの端子部分に直接接続することが重要で、例えば電源ケーブルを接続する基板側に構成しても、輻射ノイズに関してはほとんど効果は得られない。
外付けLCフィルタによる対策は、5つの素子の部品代、加工費を考えればリングバリスタによる対策がトータルで安く、確実な方法と言える。
3.モータのノイズまとめ
一般にDCマイクロモータのノイズ発生量は負荷の重さにより大きく変化する。
そのためDCマイクロモータが組み込まれた機器のノイズ測定、対策を進める場合、機器に組み込まれたままの状態では、動作に伴ってモータの負荷状態が常に変化すること、対策のために機器の分解、組み立て作業の中でモータの取り付け状態が変化すること、などの理由から測定されるノイズレベルが大きく変化するため、対策の効果を正確に捉えることが困難な場合が多い。
このためモータノイズが問題となった場合は、DCマイクロモータのみを取り出し、定負荷状態にて測定、対策を進めることが重要である。またケーブル上の電流スペクトラムを電流プローブとスペクトラムアナライザにより測定した結果は、輻射ノイズレベルとほぼ相関があることを利用して対策を進めるのも良い方法である。
-------------------------------------------------------------------
skysmotor.comステッピングモータブレーキ遊星ギアボックスモータなどを販売している専門的なオンラインサプライヤーです。お客様に競争力のある価格、または効率的なサービスを提供しております。

ロボット制御における特異点

エクサウィザーズMLエンジニアの柳元です。 あけましておめでとうございます(遅い)。
エクサウィザーズのRobotTechチームはこれまでにマニピュレータロボットを使って 粉体秤量 、液体秤量、 パレタイジング 、ピッキング、コンプライアンス制御などの動作を機械学習させることに成功してきました。 そして、これらの学習済みモデルを COREVERY によってデリバーしています。
学習と制御のフローを考えたりデバッグをする上で、念頭に置かなければならないことの1つとして、特異点の問題があります。今回はロボット制御におけるこの「特異点問題」についてお話しします。
ロボットの特異点(Singularity)とは?
特異点と聞いて何を想像するでしょうか?多くの人が 技術的特異点 を想像するかもしれませんが、数学・物理学・制御学においてはとあります。
ロボット制御における特異点は、構造的に制御できない姿勢を指します。軌道に特異点が含まれている場合、ロボットは特異点付近において高速に移動(暴走)し、そして特異点で停止してしまいます。 なので、制御する際にはこれを避ける必要があります。
ロボットの姿勢の表現
ロボットがどんな体勢になっているかの表現は、ふつう以下のいずれかを使用します。
1.関節変位 (Joint space) q: 関節の角度の値
2.姿勢 (Pose, Task space) r: TCP(Tool Center Point, ロボットの手先の位置)を表す3次元空間の値
例えば、URのような6DoFのマニピュレータは、6個の関節(joint)を回転させて姿勢(pose)を変化させることができます。
-------------------------------------------------------------------------
skysmotor.comハイブリッドステッピングモーターステッピングモータドライバなどを販売している専門的なオンラインサプライヤーです。お客様に競争力のある価格、または効率的なサービスを提供しております。

プロフィール

HN:
No Name Ninja
性別:
非公開

P R